Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation
نویسندگان
چکیده
BACKGROUND Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. RESULTS High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. CONCLUSION The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations.
منابع مشابه
First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS
1286 | J. Anal. At. Spectrom., 2015, 30, ds a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS† S. Wagner, S. Legros, K. Loeschner, J. Liu, J. Navratilova, R. Grombe, T. P. J. Linsinger, E. H. Larsen, F. vo...
متن کاملThe Aggregation Behavior of Short Chain Hydrophilic Ionic Liquids in Aqueous Solutions
In this paper, aggregation behaviors of aqueous solutions of short chain hydrophilic Ionic Liquids (ILs), 1 – allyl - 3 - methylimidazolium chloride ([Amim]Cl), 1 - ethyl - 3 - methylimidazolium chloride ([Emim]Cl), 1 - butyl - 3 - methylimidazolium chloride ([Bmim]Cl), 1 - butyl - 3 - methylimidazolium tetrafluoroborate ([Bmim]BF4) were investigated using conductivity and laser ...
متن کاملVesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering.
The separation method, flow field-flow fractionation (flow FFF), is coupled on-line with multiangle laser light scattering (MALLS) for simultaneous measurement of the size and concentration of vesicles eluting continuously from the fractionator. These size and concentration data, gathered as a function of elution time, may be used to construct both number- and mass-weighted vesicle size distrib...
متن کاملAggregation Analysis of Therapeutic Proteins, Part 3: Principles and Optimization of Field-Flow Fractionation (FFF)
LEVEL: INTERMEDIATE M any proteins are marginally stable in solution, undergoing conformational changes due to various stresses during purification, processing, and storage (1). Elevated temperature, shear strain, surface adsorption, and high protein concentration can lead to aggregation and eventual precipitation (2). Irreversible aggregation is a major problem for long-term storage stability,...
متن کاملIonic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.
This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Biological Engineering
دوره 2 شماره
صفحات -
تاریخ انتشار 2008